ISSN

2231-3915 (Online)
2231-3907 (Print)


Author(s): Bhawna Janghel, Asha Ambhaikar

Email(s): sjanghel2012@gmail.com , dr.asha.ambhaikar@gmail.com

DOI: 10.5958/2231-3915.2020.00011.5   

Address: Mrs. Bhawna Janghel, Dr. Asha Ambhaikar
Department of Computer Science, Kalinga university, Raipur, India.
*Corresponding Author

Published In:   Volume - 10,      Issue - 1,     Year - 2020


ABSTRACT:
Data clustering is the process of grouping a set of objects that objects is the same group are more similar to each other than to those in other groups. In this Paper Clustering is used as K-mean clustering to evaluate student performance based on their result of quarterly exam, half yearly exam, and final exams result. On the basis of academics performance we can compare the result of govt. school vs private school, this will help us to find out better education system.


Cite this article:
Bhawna Janghel, Asha Ambhaikar. Performance of Student Academics By K-Mean Clustering Algorithm. Int. J. Tech. 2020; 10(1):58-61. doi: 10.5958/2231-3915.2020.00011.5


REFERENCES:
1.    Datamining Tutorial, Home>BigDataandAnalytics>Datamining, http://www.tutorialride.com>datamining.
2.    https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm
3.    Oyelade, O. J, Oladipupo, O.O, Obagbuwa.I.C (IJCSIS), Application of k-Means Clustering algorithm for prediction of Students’ Academic Performance, Vol. 7, _o. 1, 2010,
4.    Sunita B Aher, Mr. LOBO L.M.R.J., Data Mining in Educational System using WEKA, (ICETT) 2011
5.    Bindiya M Varghese, Jose Tomy J, Unnikrishnan A, Poulose Jacob K, Clustering Student Data to Characterize Performance Patterns, (IJACSA)
6.    Mohammed M. Abu Tair, Alaa M. El-Halees, Mining Educational Data to Improve Students’ Performance: Volume 2 No. 2, February 2012
7.    Dorina Kabakchieva, Student Performance Prediction by Using Data Mining Classification Algorithms, Vol 1 Issue 4 November 2012
8.    Surjeet Kumar Yadav, Saurabh Pal, Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification, Vol. 2, No. 2, 51-56, 2012
9.    Dr. Sudhir B. Jagtap, Dr. Kodge B. G., Census Data Mining and Data Analysis using WEKA, (ICETSTM – 2013)
10.    P.Veeramuthu, Dr.R.Periyasamy, V.Sugasini, Analysis of Student Result Using Clustering Techniques, (IJCSIT) Vol. 5 (4), 2014
11.    M. Durairaj, C. Vijitha, Educational Data mining for Prediction of Student Performance Using Clustering Algorithms, (IJCSIT) Vol. 5 (4), 2014
12.    Kashish Kohli, Shiivong Birla, Data Mining on Student Database to Improve Future Performance, 15, July 2016
13.    Mr. Shashikant Pradip Borgavakar, Mr. Amit Shrivastava, Evaluating Student’s Performance using K-Means Clustering, Vol. 6 Issue 05, May – 2017
14.    Dr. K. Karthikeyan, P. Kavipriya, On Improving Student Performance Prediction in Education Systems using Enhanced Data Mining Techniques, Volume 7, Issue 5, May 2017
15.    Hilal Almarabeh, Analysis of Students' Performance by Using Different Data Mining Classifiers, 2017.08.02
16.    Hafez Mousa1, Ashraf Maghari2, School Students' performance Predication Using Data Mining Classification, Vol. 6, Issue 8, August 2017
17.    K. Govindasamya and T. Velmuruganb, A Study on Classification and Clustering Data Mining Algorithms based on Students Academic Performance Prediction, Volume 10 • Number 23 • 2017,
18.    Abdelbaset Al-Masri, Experiences in Mining Educational Data to Analyze Teacher's Performance: A Case Study with High Educational Teachers, 2017.10.12.01

Recomonded Articles:

Author(s): Pallavi Kale, Mohini T. Bherwani

DOI: 10.5958/2231-3915.2017.00010.4         Access: Open Access Read More

Author(s): Anil Kumar Sharma, Minaksh

DOI: 10.5958/2231-3915.2016.00021.3         Access: Open Access Read More

Author(s): Indu Rathore

DOI: 10.5958/2231-3915.2017.00013.X         Access: Open Access Read More

Author(s): Avinash Dhole, Mohan Awasthy, Sanjay Kumar

DOI:         Access: Closed Access Read More

Author(s): Bharath. K., Shishir K Jain, Kottam Varun, Ramakrishna N.

DOI: DOI: 10.5958/2231-3915.2015.00039.5         Access: Open Access Read More

Author(s): Sweta Kumari, Varsha Singh

DOI:         Access: Open Access Read More

Author(s): Praveen Yadav, S.B.Burje

DOI:         Access: Open Access Read More

Author(s): S.M. Kavishwar, A.S. Chatpalliwar, R.R. Lakhe

DOI:         Access: Open Access Read More

Author(s): Pramod Kumar Pandey, P.K. Singh

DOI:         Access: Open Access Read More

Author(s): Nagarjuna Pilaka, Ramakrishna Nallathiga

DOI: 10.5958/2231-3915.2015.00040.1         Access: Open Access Read More

Author(s): Rajeshri Lanjewar, Tripti Sharma

DOI:         Access: Open Access Read More

Author(s): Amane Nikita B., Shete Sanmati D, Chavan Rajeshwar V., Desai Punam S., V. R. Salunkhe

DOI: 10.5958/2231-3915.2019.00012.9         Access: Closed Access Read More

Author(s): V. G. Arajpure1, H. A. Gaikwad2

DOI:         Access: Open Access Read More

Author(s): A Ranjith Kumar Reddy, B Raja Shekar Rao, V Veena, R Sathish Kumar

DOI: DOI: 10.5958/2231-3915.2015.00018.8         Access: Open Access Read More

Author(s): Prasad KV, Nikhil Bhat S, Vasugi V, Venkatesan R

DOI: 10.5958/2231-3915.2015.00034.6         Access: Open Access Read More

Author(s): Srinivas Angadi, M Padmavathi, Raja Sekhar Mamillapalli

DOI: 10.5958/2231-3915.2015.00035.8         Access: Open Access Read More

Author(s): Santanu Halder, Abul Hasnat, Debotosh Bhattacharjee, Mita Nasipuri

DOI:         Access: Open Access Read More

Author(s): Prashant Kumar Gavel, Ramakant Prasad, Nainsy Rathore, Deepshikha Yadav

DOI: 10.5958/2231-3915.2020.00016.4         Access: Closed Access Read More

International Journal of Technology (IJT) is an international, peer-reviewed journal, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-3915 


Recent Articles




Tags