ISSN

2231-3915 (Online)
2231-3907 (Print)


Author(s): Suyash Ingle, Monika Yemul, Anjali Lavate, Anjali Desai

Email(s): monikayemul20@gmail.com , lavateanjali2003@gmail.com , anjalidesai2004@gmail.com

DOI: 10.52711/2231-3915.2024.00017   

Address: Suyash Ingle*, Monika Yemul, Anjali Lavate, Anjali Desai
Gandhi Natha Rangji College of Pharmacy, Solapur, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 2,     Year - 2024


ABSTRACT:
Artificial intelligence (AI) has emerged as a revolutionary technology in various fields, including the pharmaceutical industry. One of the areas where artificial intelligence has shown great potential is in the development of drug delivery systems. Drug delivery systems play an important role in ensuring the efficient and effective management of drug agents and the creation of revolution-oriented medicine in this field. The section of the article on the use of artificial intelligence in drug delivery systems presents the main aspects of this innovative approach. Drug delivery methods, such as poor bioavailability, limited targeting, and unwanted side effects. It would then delve into the ways in which AI can address these challenges and enhance the efficiency of drug delivery. Various AI-based techniques employed in drug delivery, such as computational modeling, machine learning, and predictive analytics. These technologies enable the optimization of drug formulations, the identification of novel drug targets, and the personalization of treatment regimens based on individual patient characteristics. AI-driven drug delivery systems, including improved therapeutic efficacy, reduced side effects, and enhanced patient compliance. It also addresses the challenges and limitations associated with the implementation of artificial intelligence.


Cite this article:
Suyash Ingle, Monika Yemul, Anjali Lavate, Anjali Desai. Artificial Intelligence in Drug Delivery System. International Journal of Technology. 2024; 14(2):115-4. doi: 10.52711/2231-3915.2024.00017

Cite(Electronic):
Suyash Ingle, Monika Yemul, Anjali Lavate, Anjali Desai. Artificial Intelligence in Drug Delivery System. International Journal of Technology. 2024; 14(2):115-4. doi: 10.52711/2231-3915.2024.00017   Available on: https://ijtonline.com/AbstractView.aspx?PID=2024-14-2-8


REFERENCES:
1.    LK Vora, AD Gholap, K Jetha, RRS Thakur, HK Solanki… - Pharmaceutics, 2023 mdpi.com. Artificial intelligence in pharmaceutical technology and drug delivery design. Cited by 204
2.    Kotta Kranthi Kumar. Importance and Applications of Artificial Intelligence (Metastorm Software) in Pharmaceutical Process Life-Cycle. Res. J. Pharma. Dosage Forms and Tech.2019; 11(2):116-120.
3.    W Wang, Z Ye, H Gao, D Ouyang-Journal of Controlled Release, 2021-Elsevier. Computational pharmaceutics- A new paradigm of drug delivery.
4.    Sidhartha Jyoti Bora, Runa Chakravorty, Payal Das Gupta. The use of Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2023; 13(3):229-4.
5.    Lou H.. Lian B., Hageman M.J. Applications of Machine Learning in Solid Oral Dosage Form Development. J. Pharm. Sci. 2021:110:3150-3165. Doi: 10.1016/j.xphs.2021.04.013,
6.    Suyash Ingale, Nikhil Shrisunder, Ganesh Gophane, Avinash Birajdar. Ascent of Artificial Intelligence (AI) in Pharmacy. International Journal of Technology. 2024; 14(1):54-8.
7.    Advances in artificial intelligence for drug delivery and development: A comprehensive review Amol D. Gholap, Md Jasim Uddin, Md Faiyazuddin. Abdelwahab Omri S. Gowri, Mohammad Khalid, https://doi.org/10.1016/j.compbiomed.2024.108702
8.    RNSK Kartheek, V Rama Raju, R Md. Shafi. Blue Brain – A New Subway to Artificial Intelligence and Human Machine: A Proposal. Int. J. Tech. 4(2): July-Dec. 2014; Page 287-290.
9.    Riniker, Y. Wang, JL. Jenkins, G.A. Landrum Using information from historical high-throughput screens to predict active compounds J Chem Inf Model, 54 (7) (2014), pp. 1880-1891
10.    S. Cruz Rivera, X. Liu, A.W. Chan, A.K. Denniston, M.J. Calvert The SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-Al extension Lancet Digit Health, 2 (10) (2020), pp. e549-6560
11.    S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J.M. Granda, G. Keenan, et al. Organic synthesis in a modular robotic system driven by a chemical programming language Science, 363 (6423) (2019), Article eaav2211
12.    Lalitkumar K.Vora, Amol D. Gholap, Keshava Jetha , Raghu Raj Singh Thakur Hetvi K. Solanki and Vivek P. Chavda Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023 Jul: 15(7): 1916. Published online 2023 Jul 10. Doi: 10.3390/pharmaceutics15071916
13.    Pusukuri Navya. Prigarini K. Tejaswi K. Prasanti D Optimization Techniques in Designing Pharmaceutical Formulations.
14.    Prasad Patil, Nripesh Kumar Nrip, Ashok Hajare, Digvijay Hajare, Mahadev K. Patil, Rajesh Kanthe, Anil T. Gaikwad. Artificial Intelligence and Tools in Pharmaceuticals: An Overview. Research Journal of Pharmacy and Technology 2023; 16(4):2075-2.
15.    Sanjay S. Patel, Sparsh A. Shah. Artificial Intelligence: Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology; 12(4):337-8.
16.    Debleena Paul, Gaurav Sanap. Snehal Shenoy. Dnyaneshwar Kalyane, Kiran Kalia, Rakesh K. Tekade Artificial intelligence in drug discovery and development.
17.    Aakash Bairagi, Akhlesh K. Singhai, Ashish Jain. Artificial Intelligence: Future Aspects in the Pharmaceutical Industry an Overview. Asian Journal of Pharmacy and Technology. 2024; 14(3):237-6.
18.    Aliper. A., Realty. B. H., Issa, N. T., Volchenboum, S. L.. Grossman, R. L., and Zhavoronkov, A. (2016). Deep Learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Molecular pharmaceutics. 13(7).2524-2530
19.    Asane Varad Arun, Pangavhane Namrata Balasaheb, Jori Vikas Babasaheb, Jadhav Dipak Kailas, Kale Rushikesh Adinath, Nalawade Dipak Dadasaheb. Artificial Intelligence and Challenges in Ayurveda Pharmaceutics: A Review. Research Journal of Science and Technology. 2024; 16(3):237-4.
20.    Lu. Z., Su, M., Zeng. L., and Liu. Z. (2018). Advances in drug repositioning using transcriptomic data. Drug discovery today, 23(1), 276-282
21.    Lachman’s/lieberman’s CBSDistributors, 2013, 872,902,905. 943.
22.    Shaikh Habeeba. Use of Artificial Intelligence in Drug Discovery and its Application in Drug Development. Asian Journal of Research in Chemistry. 2023; 16(1):83-0.
23.    Salazar, J., Müller, R.H. and Möschwitzer, J.P., 2014. Combinative particle size reduction Technologies for the production of Drug nanocrystals. Journal of pharmaceutics, 2014.
24.    Kedar Prasad Meena, J.S. Dangi, PK Samal and Manoj Kumar review on Nanoparticles Technology and Recent Advances in Novel Drug Delivery systems 2011:1 (1): 1-5.
25.    Junyaprasert. V.B., Teeranachaideekul, V. and Supaperm. T., 2008. Effect of charged and non-ionic Membrane additives on Physicochemical properties and stability of niosomes. Aaps Pharm SciTech. 9(3). Pp.851-859
26.    Patela J., Patelb R.. Khambholjab K., Patela N., “An overview of phytosomes as an advanced herbal drug delivery system”, 2009. Asian Journal of Pharmaceutical Sciences, 4(6):363-371
27.    Sarika Anand Jadhav, Prof. Prashant Patil and Dr. Ramesh Kalkotwar Vol 5. Issue 10, 2016 wjpps.research article of NANOPARTICLES AS-PARTICULATE DRUG DELIVERY SYSTEll wjpps
28.    30.Mura, S., Pirot, F., Menconi, M., Falson, F. and Fadda, A.III., 2007. Liposomes and niosomes as Potential carriers for derma.
29.    Chaturvedi, M., Kumar, M., Singhal. A. and Saifi, A., 2011. Recent development in novel drug Delivery systems of herbal Drugs. International Journal of Green Pharmacy (Medknow Publications and Media Pvt. Ltd.).
30.    Verma, S., Singh, S.K., Syan, N., Mathur, P. and Valecha, V..2010. Nanoparticle vesicular stems: a Versatile  tool for drug Delivery. J Chem Pharm Res. 2(2). Pp.496-509.
31.    Atrooz, O.M., 2011. Effects of alkylresorcinolic lipids obtained from acetonic extract of Jordanian Wheat grains on liposome Properties. Int J BioChem, 5(5), pp.314-321.
32.    Shehata, T., Ogawara, K.J., Higaki, K. and Kimura, T., 2008. Prolongation of residence time of liposome by surface modification with mixture of hydrophilic polymers. International journal of pharmaceutics, 359(1-2).pp.272-279
33.    Kalyane D. Artificial intelligence in the pharmaceutical sector: current scene and future prospect. In: Tekade Rakesh K., editor. The Future of Pharmaceutical Product Development and Research. Elsevier: 2020. Pp. 73-107.
34.    Poonam Joshi, Itika Guleria, Agush Dangwal, Purabi Saha. Sunil Kothari, Sapna Rawat Artificial Intelligence in Controlled Drug Delivery System 1430-1437,2022.
35.    D.E. Pankevich et al. Improving and accelerating drug Development for nervous system disorders Neuron (2014)Υ.ΗΗ
36.    Yun et Controlled drug delivery: historical perspective for the next generation. J. Contr. Release (2015)
37.    Krikorian G., Torreele E. We Cannot Win the Access to Medicines Struggle Using the Same Thinking That Causes the Chronic Access Crisis. Health Hum. Rights. 2021:23:119-127. [PMC free article] [PubMed] [Google Scholar]
38.    Chavda V.P., Vihol D., Patel A., Redwan E.III., Uversky V.N. Bioinformatics Tools for Pharmaceutical Drug Product Development. John.
39.    Wiley and Sons, Ltd: Hoboken, NJ, USA: 2023. Introduction to Bioinformatics, Al, and IML for Pharmaceuticals: pp. 1-18. [Google Scholar] References (248).
40.    Hachen M. Hawk Car Auch dedinicama conNat Rev Drug Day 2017,1604)381-2121 Masre 11 hung Anderson Alexander CC Estics tevotal trials tved therapeia επι ερευνed by the US fund and Drug Admin Med 2018178(1):1451.
41.    Y. Li et al. In vivo delivery of BCNU from a MEMS device. To a tumor modell. Control. Release (2005
42.    L. Cao et al. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology Sensors Actuators A (2001)
43.    T. NisisakoRecent advances in microfluidic production of Janus droplets and particles Curr. Opin, Colloid Interface Sci. (2016)
44.    H.B. Grangeja et al. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives Eur. J. Pharm. Biopharm. (2020).
45.    AB Talat et al. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: paradigm to combat drug-resistant infections
46.    Kamal Singh Rathore, Rohit lowalekar. Nema RK, The Pharma Review, 2006: 30-32.
47.    Charman WN. Chan K, Finnin BC and Charman SA. Drug Delivery: A Key Factor in Realising the Full Therapeutic Potential of Drug. Drug Development Research, 46, 316-27. 1999.6. Kopecek J. Smart and genetically engineered biomaterials and drug delivery systems. European Journal of Pharmaceutical Sciences 2003: 20:1-16.
48.    Torchilin, VP. Structure and design of polymeric surfactant-based drug delivery systems, Journal of Controlled Release 2001:73:137-721JFMR2302493 Volume 5, Issue 2. March-April 2023.

Recomonded Articles:

Author(s): Pallavi Kale, Mohini T. Bherwani

DOI: 10.5958/2231-3915.2017.00010.4         Access: Open Access Read More

Author(s): Vaishnavi Bhagwat Savant, Rupali D. Kasar

DOI: 10.52711/2231-3915.2021.00011         Access: Open Access Read More

Author(s): Nutan Singh, Mukesh Kashyap, Sanjay Kumar, V. K. Patle

DOI: 10.5958/2231-3915.2020.00015.2         Access: Open Access Read More

Author(s): Nitin Sachdeva, Munish Vashishath, P.K. Bansal

DOI: 10.5958/2231-3915.2018.00005.6         Access: Open Access Read More

Author(s): Abhijit Ray

DOI:         Access: Open Access Read More

Author(s): Rajeshri Lanjewar, Tripti Sharma

DOI:         Access: Open Access Read More

Author(s): Muhammad Adnan Younis, Iftikhar Hussain Bukhari, Qaisar Abbas, Neelam Bin Talib, Sana Shaukat

DOI: 10.5958/2231-3915.2018.00008.1         Access: Open Access Read More

Author(s): Rajeswari Saripilli, Pikkala Shirisha

DOI: 10.52711/2231-3915.2021.00002         Access: Open Access Read More

Author(s): Anitha A, Revathi SV, Jeevanantham S, Eliza Godwin E

DOI: 10.5958/2231-3915.2017.00005.0         Access: Open Access Read More

Author(s): Aakansha Mercy Steele, Tarabhan Gupta

DOI: 10.5958/2231-3915.2018.00006.8         Access: Open Access Read More

Author(s): Sulakshana Bhariya, Guide Jagveer Verma

DOI:         Access: Open Access Read More

Author(s): Shishir Shrivastava, Ajay Kumar Akasapu, Lokesh Sharma

DOI:         Access: Open Access Read More

Author(s): Md. Jaweed Jilani Khan, Seshadri Sekhar Tirumala

DOI: DOI: 10.5958/2231-3915.2015.00016.4         Access: Open Access Read More

Author(s): Yuvaraj S K, Pooja Prakash Kanoor, Akshay Siddeshwar Nikhade, Ratri Parida, Jeetu Soneji

DOI: 10.5958/2231-3915.2015.00044.9         Access: Open Access Read More

International Journal of Technology (IJT) is an international, peer-reviewed journal, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-3915 


Recent Articles




Tags