Author(s):
Sharma Kapil, Kalaiselvan Vivekanandan, Chaudhary Priyanka, Kalaivani Muthusamy
Email(s):
kapil.sharma2072000@gmail.com
DOI:
10.52711/2231-3915.2024.00018
Address:
Sharma Kapil1, Kalaiselvan Vivekanandan2, Chaudhary Priyanka2, Kalaivani Muthusamy2
1Master of Pharmacy, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, India.
2Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare (Govt. of India), Ghaziabad, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 2,
Year - 2024
ABSTRACT:
Dry eye disease is defined as a multifactorial disease of the tears and ocular surface that results from tear film instability that leads to visual disturbance and ocular discomfort. A better understanding of the pathophysiology and etiology of dry eye disease is necessary for efficient management and treatment of the disease process. Eye on chip (type of organ chip) acts as an alternative model for disease modeling. These chips help in exploration of facets of human disease and development which is not accurately recapitulated by animal models. This technology will increase our understanding of the basic physiology of different eye structures and enable us to interrogate unknown aspects of ophthalmic disease pathogenesis and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. These chips play important role in drug development process and can be used in clinical trials for drug testing in place of animals. Overall, these chips reduce the cost of drug development process by increasing the success rate of clinical trials they also help in avoiding ethical issues related to animal testing.
Cite this article:
Sharma Kapil, Kalaiselvan Vivekanandan, Chaudhary Priyanka, Kalaivani Muthusamy. Eye on-chip as new paradigm for drug discovery and disease modeling of dry eyes disease. International Journal of Technology. 2024; 14(2):125-1. doi: 10.52711/2231-3915.2024.00018
Cite(Electronic):
Sharma Kapil, Kalaiselvan Vivekanandan, Chaudhary Priyanka, Kalaivani Muthusamy. Eye on-chip as new paradigm for drug discovery and disease modeling of dry eyes disease. International Journal of Technology. 2024; 14(2):125-1. doi: 10.52711/2231-3915.2024.00018 Available on: https://ijtonline.com/AbstractView.aspx?PID=2024-14-2-9
REFERENCES:
1. Yang Q, Lian Q, Xu F. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting. Biomicrofluidics. 2017; 11(3). doi:10.1063/1.4982945
2. Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: A New Paradigm for Drug Development.
3. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998; 70(23): 4974-4984. doi:10.1021/ac980656z
4. Danku AE, Dulf EH, Braicu C, Jurj A, Berindan-Neagoe I. Organ-On-A-Chip: A Survey of Technical Results and Problems. Front Bioeng Biotechnol. 2022; 10. doi:10.3389/fbioe.2022.840674
5. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014; 32(8): 760-772. doi:10.1038/nbt.2989
6. Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA. Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development. Journal of Ocular Pharmacology and Therapeutics. 2020; 36(1): 25-29. doi:10.1089/jop.2018.0139
7. Bai J, Wang C. Organoids and Microphysiological Systems: New Tools for Ophthalmic Drug Discovery. Front Pharmacol. 2020; 11. doi:10.3389/fphar.2020.00407
8. Lu Q, Yin H, Grant MP, Elisseeff JH. An in Vitro Model for the Ocular Surface and Tear Film System. Sci Rep. 2017; 7(1). doi:10.1038/s41598-017-06369-8
9. Spöler F, Frentz M, Schrage NF. Towards a New in Vitro Model of Dry Eye:The Ex Vivo Eye Irritation Test. Vol 45.; 2010.
10. Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov. 2019; 14(1): 47-57. doi:10.1080/17460441.2019.1551873
11. Singh S, Sharma S, Basu S. Rabbit models of dry eye disease: Current understanding and unmet needs for translational research. Exp Eye Res. 2021; 206. doi:10.1016/j.exer.2021.108538
12. Sullivan BD, Crews LA, Barıs¸barıs¸sönmez B, et al. Clinical Utility of Objective Tests for Dry Eye Disease: Variability Over Time and Implications for Clinical Trials and Disease Management.; 2012. http://www.accessdata.fda.gov/cdrh_docs/pdf8/K083184.pdf
13. Resau JH, Sakamoto K, Cottrell JR, Hudson EA, Meltzer SJ. Explant Organ Culture: A Review. Vol 7. Kluwer Academic Publishers; 1991.
14. Hutson MS, Alexander PG, Allwardt V, et al. Organs-on-Chips as Bridges for Predictive Toxicology. Appl In Vitro Toxicol. 2016; 2(2): 97-102. doi:10.1089/aivt.2016.0003
15. Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015; 14(4): 248-260. doi:10.1038/nrd4539
16. Rouen PA, White ML. DRY EYE Prevalence, Assessment, and Management. Vol 36.; 2018. doi:10.1097/NHH.0000000000000652
17. Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology. 2017; 124(11): S4-S13. doi:10.1016/j.ophtha.2017.07.010
18. Messmer EM. The Pathophysiology, Diagnosis, and Treatment of Dry Eye Disease. Dtsch Arztebl Int. Published online January 30, 2015. doi:10.3238/arztebl.2015.0071
19. Manafi N, Shokri F, Achberger K, et al. Organoids and organ chips in ophthalmology. Ocular Surface. 2021; 19: 1-15. doi:10.1016/j.jtos.2020.11.004
20. Seo J, Huh D. A HUMAN BLINKING ‘EYE-ON-A-CHIP.’ In: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences. CBM Society; 2014.
21. Bennet D, Estlack Z, Reid T, Kim J. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab Chip. 2018; 18(11): 1539-1551. doi:10.1039/c8lc00158h
22. Evinger C, Bao J Bin, Powers AS, et al. Dry eye, blinking, and blepharospasm. Movement Disorders. 2002; 17(SUPPL. 2). doi:10.1002/mds.10065
23. Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface. Nat Med. 2019; 25(8): 1310-1318. doi:10.1038/s41591-019-0531-2
24. Heidari M, Noorizadeh F, Wu K, Inomata T, Mashaghi A. Dry eye disease: Emerging approaches to disease analysis and therapy. J Clin Med. 2019; 8(9). doi:10.3390/jcm8091439
25. Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface. Nature Medicine. 2019; 25(8): 1310-1318. doi:10.1038/s41591-019-0531-2
26. Selvam S, Thomas PB, Trousdale MD, et al. Tissue-engineered tear secretory system: Functional lacrimal gland acinar cells cultured on matrix protein-coated substrata. J Biomed Mater Res B Appl Biomater. 2007; 80(1): 192-200. doi:10.1002/jbm.b.30584
27. Richards SM, Jensen R V., Liu M, et al. Influence of sex on gene expression in the mouse lacrimal gland. Exp Eye Res. 2006; 82(1): 13-23. doi:10.1016/j.exer.2005.04.014
28. Spaniol K, Metzger M, Roth M, et al. Engineering of a secretory active three-dimensional lacrimal gland construct on the basis of decellularized lacrimal gland tissue. Tissue Eng Part A. 2015; 21(19-20): 2605-2617. doi:10.1089/ten.tea.2014.0694
29. Singh D, Mathur A, Arora S, Roy S, Mahindroo N. Journey of organ on a chip technology and its role in future healthcare scenario. Applied Surface Science Advances. 2022; 9. doi:10.1016/j.apsadv.2022.100246
30. Piergiovanni M, Leite SB, Corvi R, Whelan M. Standardisation needs for organ on chip devices. Lab Chip. 2021; 21(15): 2857-2868. doi:10.1039/d1lc00241d