ISSN

2231-3915 (Online)
2231-3907 (Print)


Author(s): Suyash Ingle, Kshitij Shinde, Aniruddh Kurulkar

Email(s): suyashingle07@gmail.com , shindekshitij20@gmail.com

DOI: 10.52711/2231-3915.2025.00015   

Address: Suyash Ingle*, Kshitij Shinde, Aniruddh Kurulkar
Solapur, Maharashtra India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 2,     Year - 2025


ABSTRACT:
To enhance medical care and medication administration, a rapidly expanding area of bioengineering and biotechnology called microelectromechanical systems, or MEMS, combines mechanical and microelectronic components. These technologies enable more precise and targeted medicine administration, reducing side effects and increasing therapeutic efficacy. MEMS devices are incredibly adaptable and small, and they may find application in a variety of fields, such as communications, electronics, and medicine. Through wearables or implants, MEMS can be utilized in medical applications to treat diseases including diabetes, cancer, heart disease, and neurological issues by delivering medication directly to the site of need. These devices, which also offer benefits like precision dosing, remote monitoring, improved patient compliance, and tailored therapy, can be used to give small molecules and biologics. Implantable medical devices have a bright future ahead of them thanks to the significantly expanded possibilities of nanotechnology and wireless connectivity together. Notwithstanding, there are still obstacles to overcome, such as the necessity for additional miniaturization, regulatory obstacles, intricate production procedures, integration and packaging constraints, and environmental sensitivity. To fully realize the potential of MEMS in medical and other applications, concerns including long- term dependability, cost reduction, standardization, and scaling up production must also be addressed. Despite these obstacles, MEMS devices have the potential to completely transform healthcare and other industries by providing accurate, customized, and effective solutions.


Cite this article:
Suyash Ingle, Kshitij Shinde, Aniruddh Kurulkar. Microelectromechanical systems (mems) for drug delivery: A detailed Review. International Journal of Technology. 2025; 15(2):82-0. doi: 10.52711/2231-3915.2025.00015

Cite(Electronic):
Suyash Ingle, Kshitij Shinde, Aniruddh Kurulkar. Microelectromechanical systems (mems) for drug delivery: A detailed Review. International Journal of Technology. 2025; 15(2):82-0. doi: 10.52711/2231-3915.2025.00015   Available on: https://ijtonline.com/AbstractView.aspx?PID=2025-15-2-6


REFERENCES:
1.    Muhammad Waseem Ashraf, Shahzadi Tayyaba, Asim Nisar, and Nitin Afzulpurkar, "MEMS-Based System for Drug Delivery”, 2010 6th International Conference on Emerging Technologies (ICET), pp. 82–87, IEEE 2010.
2.    Eric E. Nuxoll and Ronald A. Siegel, “BioMEMS Devices for Drug Delivery”, Improved Therapy by Design, IEEE Engineering in Medicine and Biology Magazine, pp. 31–39. IEEE January/February 2009.
3.    Smitha M. N. Rao, Amit Mhatre, Dan O. Popa, J.-C. Chiao, Thermpon Ativanichayaphong, Jeongsik Sin, and Harry E. Stephanou, “MEMS-based Implantable Drug Delivery System”, VII International Conference on Micro Electro Mechanical Systems, Sept. 21–22, 2005, Mexico.
4.    P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A silicon-based, threedimensional neural interface: manufacturing processes for an intracortical electrode array”, IEEE Trans Biomed Eng 38(8), pp. 758–768.
5.    Wang B, Chu X, Li E, and Li L., “Simulations and analysis of a piezoelectric micropump”, Ultrasonic, 44, pp. 643–6, 2006.
6.    C. Amy, et al., A BioMEMS review: MEMS technology for physiologically integrated devices, in: Proceedings of the IEEE 921, 2004, pp. 6–21.
7.    Zengerle, M. Richter, and H. Sandmaier, A micro membrane pump with electrostatic actuation, in: Proceedings of IEEE, Microelectromechanical System, 92, pp. 19–24.
8.    N. Wilke, C. Hibert, J. O’Brien, and A. Morrissey, “Silicon Microneedle electrode array with temperature monitoring for electroporation”, Sensors and Actuators A 123–124, pp. 319–325, 2005.
9.    S. Zimmermann, J.A. Frank, D. Liepmann, and A.P. Pisano, A planar micropump utilizing thermo pneumatic actuation and in-plane flap valves, in Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS): MEMS 2004 Technical Digest, Maastricht, 2004, pp. 462–465.
10.    S.R. Hwang, W.Y. Sim, D.H. Jeon, G.Y. Kim, S.S. Yang, J.J. Pak, Fabrication and test of a sub-microliter-level thermo pneumatic micropump for transdermal drug delivery, in Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Kahuku, Oahu, Hawaii, 2005. 
11.    Hilton P, McMullen JN; A New Gradient Matrix: Formulation and Characterization, Controlled Release; 1995, 34: 263–271.
12.    Lu S., Ramirez F., and Anseth K., Photopolymerized, Multilaminated Matrix Devices with Optimized Non-Uniform Initial Concentration Profiles to Control Drug Release, J. Pharm. Sci.; 2000, 89.
13.    Qiu Y, Chidambaram N, Flood K; Design and Evaluation of Layered Diffusional Matrices for Zero-Order Sustained Release, J. Controlled Release; 1998, 51: 123–130.
14.    ChienYie W., Novel Drug Delivery System, Marcel Dekker Inc., 1992, 2: 381.
15.    Saettone MF, Salminen L; Ocular Inserts for Topical Delivery, Adv Drug Del Rev; 1995; 16: 95–106.
16.    Khar RK, Vyas SP; Targeted and Controlled Drug Delivery Novel Carrier Systems, CBS Publishers and Distributors: New Delhi; 2002, 1st Ed, 384.
17.    A.C. Hunter et al., Smart polymers in drug delivery: a biological perspective Polym. Chem.(2017).
18.    R. Fernandes et al., Self-folding polymeric containers for encapsulation and delivery of drugs, Adv. Drug Deliver. Rev. (2012).
19.    Y.-C. Kim et al., Microneedles for drug and vaccine delivery, Adv. Drug Deliver. Rev. (2012).
20.    M. Aryal et al., Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system, Adv. Drug Deliver. Rev. (2014).
21.    B. Z. Yang and Q. Lin, "A planar compliance-based self adaptive microfluid variable resistor," Journal of Microelectromechanical Systems, vol. 16, pp. 411-419, 2007.
22.    J. T. Santini, Jr., M. J. Cima, and R. Langer, "A controlled-release microchip," Nature, vol. 397, pp. 335-338, 1999.
23.    P. Y. Li, T. K. Givrad, D. P. Holschneider, J. M. Maarek, and E. Meng, "A perylene mems electrothermal valve," Journal of Microelectromechanical Systems, 2009, submitted for publication.
24.    P. Y. Li, T. K. Givrad, D. P. Holschneider, J. M. Maarek, and E. Meng, "A wirelessly-activated perylene electrothermal valve for mapping brain function in freely moving subjects," in Hilton Head 2008, Hilton Head Island, South Carolina, 2008, pp. 32-35.
25.    A. Nisar et al., MEMS-based micropumps in drug delivery and biomedical applications Sensors Actuators B Chem. (2008).
26.    R. Lo, P. Y. Li, S. Saati, R. Agrawal, M. S. Humayun, and E. Meng, "A refillable microfabricated drug delivery device for treatment of ocular diseases," Lab on a Chip, vol. 8, pp. 1027-1030, 2008.
27.    S. A. Warren, Medtronic Gains Approval of First Artificial Pancreas Device System with Threshold Suspend Automation, Medtronic, Minneapolis October, 2014.
28.    B Fox, Cade, Hariharasudhan D Chirra, and Tejal A Desai. "Planar bioadhesive microdevices: a new technology for oral drug delivery." Current Pharmaceutical Biotechnology 15, no. 7 (2014): 673-683.
29.    Tang, Rongbiao, Wei-Xia Li, Wei Huang, Fuhua Yan, Wei-Min Chai, Guo-Yuan Yang, and Ke-Min Chen. "CO2-based in-line phase contrast imaging of small intestine in mice." Scientific Reports 3 (2013): 2313.
30.    Tao, Sarah L., and Tejal A. Desai. "Gastrointestinal patch systems for oral drug delivery." Drug Discovery Today 10, no. 13 (2005): 909-915.
31.    Tao, Sarah L., and Tejal A. Desai. "Microfabrication of multilayer, asymmetric, polymeric devices for drug delivery." Advanced Materials 17, no. 13 (2005): 1625-1630.
32.    S. N. Shivappriya, R. Dhivyapraba, A. Kalaiselvi, M. Alagumeenakshi. Telemedicine Approach for Patient Monitoring System using IOT. Research J. Engineering and Tech. 2017; 8(3): 233-236.
33.    Sweta Bhattacharya. A Review of the Application of Automation Technologies in Healthcare Domain. Research J. Pharm. and Tech 2016; 9(12): 2343-2348.
34.    S. Krishnakumar, K. Monika, Brite Jose John, Nevin Samuel. Automatic Ingestion Monitoring Device for Diet Control. Research J. Pharm. and Tech. 2017; 10(7): 2173-2178.
35.    Syed Shameem, G. R. K. Prasad, Muzamilparvez. M, U. Reshmi, G. Harshitha, K. Haritha. Design and FEM model Analysis of MEMS cantilever structure for detection of Colon Cancer using Mass sensing. Research J. Pharm. and Tech. 2019; 12(9): 4250-4254.
36.    Ramandeep Kaur, J N Sharma. Deflection in Micro-Scale Thermoelastic Simply-Supported Beams due to Patch Loading. Research J. Science and Tech. 2013: 5(1): 153-159.
37.    Shinde. G.S., Prasad Kumbhar, Jadhav. R.S., Vikhe. D. N. Monoclonal Antibodies as a Site Specific Particulate Drug Delivery System: A Review. Asian Journal of Pharmaceutical Analysis. 2022; 12(4): 286-2.
38.    Akhil Gupta, Anuj Mittal , Alok Kumar Gupta. Colon Targeted Drug Delivery Systems – A Review. Asian J. Pharm. Res. 2011; 1(2): 25-33.
39.    Hiral A. Makadia, Ami Y. Bhatt, Ramesh B. Parmar, Ms. Jalpa S. Paun, H.M. Tank. Self-nano Emulsifying Drug Delivery System (SNEDDS): Future Aspects. Asian J. Pharm. Res. 2013; 3(1): 20-26.
40.    Kumbhar Swapnil, Salunkhe Vijay , Magdum Chandrakant. Targeted Drug Delivery: A Backbone for Cancer Therapy. Asian J. Pharm. Res. 2013; 3(1): 40-46.
41.    Kshitij B. Makeshwar, Suraj R. Wasankar. Niosome: a Novel Drug Delivery System. Asian J. Pharm. Res. 3(1): Jan.-Mar. 2013; Page 15-19. Asian J. Pharm. Res. 2013; 3(1): 15-19.
42.    Girjesh Vishwakarma, Aakash Singh Panwar, Nirmal Dongre. Emulgel: A Novel Technique for Transdermal Drug Delivery. Research Journal of Topical and Cosmetic Sciences. 2023; 14(1): 20-8.
43.    Diksha K. Nunse, Rohini N. Jadhav, Amol S. Deshmukh. Cream as a Drug Delivery System for Topical Diseases. Research Journal of Topical and Cosmetic Sciences. 2022; 13(1): 35-3.

Recomonded Articles:

Author(s): Pavankumar Naik, Rajeshwari Gamanagatti, Jagadeesh Meti, Nagaraj Telkar

DOI: 10.5958/2231-3915.2017.00011.6         Access: Open Access Read More

Author(s): Amane Nikita B., Shete Sanmati D, Chavan Rajeshwar V., Desai Punam S., V. R. Salunkhe

DOI: 10.5958/2231-3915.2019.00012.9         Access: Open Access Read More

Author(s): Muhammad Adnan Younis, Iftikhar Hussain Bukhari, Qaisar Abbas, Neelam Bin Talib, Sana Shaukat

DOI: 10.5958/2231-3915.2018.00008.1         Access: Open Access Read More

Author(s): Rajeswari Saripilli, Pikkala Shirisha

DOI: 10.52711/2231-3915.2021.00002         Access: Open Access Read More

Author(s): Praveen Yadav, S.B.Burje

DOI:         Access: Open Access Read More

Author(s): Pallati Abhinaya Das, S M Abdul Mannan Hussain, Yerra Indra Karan

DOI: DOI: 10.5958/2231-3915.2015.00019.X         Access: Open Access Read More

Author(s): Srinivas Angadi, M Padmavathi, Raja Sekhar Mamillapalli

DOI: 10.5958/2231-3915.2015.00035.8         Access: Open Access Read More

Author(s): Ajay I. Patel, Bhatt Isha, Amit J. Vyas, Nilesh Patel

DOI: 10.52711/2231-3915.2022.00001         Access: Open Access Read More

Author(s): Arti, Neha kumara, Nitian Bharti Gupta

DOI: 10.52711/2231-3915.2021.00012         Access: Open Access Read More

Author(s): Mohammed Bakhtawar Ahmed, Sandeep Gonnade, Deepak Xaxa

DOI: 10.5958/2231-3915.2016.00001.8         Access: Open Access Read More

Author(s): John Sushil Packiaraj, Bhasker Garg, Prateek Bansal

DOI: DOI: 10.5958/2231-3915.2015.00004.8         Access: Open Access Read More

Author(s): Komal V. Kakade, Rahul D. Khaire

DOI: 10.52711/2231-3915.2022.00009         Access: Open Access Read More

Author(s): Suyash Ingle, Monika Yemul, Anjali Lavate, Anjali Desai

DOI: 10.52711/2231-3915.2024.00017         Access: Open Access Read More

Author(s): Nikhil Shrisunder, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam

DOI: 10.52711/2231-3915.2025.00004         Access: Closed Access Read More

Author(s): Suyash Ingle, Kshitij Shinde, Aniruddh Kurulkar

DOI: 10.52711/2231-3915.2025.00015         Access: Closed Access Read More

International Journal of Technology (IJT) is an international, peer-reviewed journal, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-3915 


Recent Articles




Tags