ISSN

2231-3915 (Online)
2231-3907 (Print)


Author(s): Nikhil Shrisunder, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam

Email(s): nikhilshrisunder1989@gmail.com , shrutikayangul176@gmail.com , mahindrakarpranali988@gmail.com , omkothari069@gmail.com , suyashingle1806@gmail.com

DOI: 10.52711/2231-3915.2025.00004   

Address: Nikhil Shrisunder*, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam
Gandhi Natha Rangji College of Pharmacy, Solapur, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 1,     Year - 2025


ABSTRACT:
Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. The present review highlights the importance and superiority of unique nanoparticulate formulations which tends to enhance bioavailability. All the important literature along with online sources were searched and analysed. So, to achieve the desired therapeutic objective, the drug product must deliver the active drug at an optimal rate and amount. By proper biopharmaceutical design, the rate and extent of drug absorption (also called as bioavailability) or the systemic delivery of drugs to the body can be varied from rapid and complete absorption to slow and sustained absorption depending upon the desired therapeutic objective. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body, which also enhances bioavailability of drugs.


Cite this article:
Nikhil Shrisunder, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam. A Brief Review on Nanoparticulate Drug Delivery Systems for Bioavailability Enhancement of Drugs. International Journal of Technology. 2025; 15(1):17-3. doi: 10.52711/2231-3915.2025.00004

Cite(Electronic):
Nikhil Shrisunder, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam. A Brief Review on Nanoparticulate Drug Delivery Systems for Bioavailability Enhancement of Drugs. International Journal of Technology. 2025; 15(1):17-3. doi: 10.52711/2231-3915.2025.00004   Available on: https://ijtonline.com/AbstractView.aspx?PID=2025-15-1-4


REFERENCES:
1.    Čerpnjak K, Zvonar A, Gašperlin M, Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharmaceutica. 2013; 63(4): 427-445. 
2.    Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Science OA. 2016; 2(3): FSO135. 
3.    Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H. When poor solubility becomes an issue: From early stage to proof of concept. European Journal of Pharmaceutical Sciences. 2007; 31(5): 249-261. 
4.    Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental, and computational approaches to estimate solubility and permeability in drug discovery and development. Advanced Drug Delivery Reviews. 2001; 46(1- 3): 3-26. 
5.    Lipinski C. Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods. 2000; 44(1): 235-249.
6.    Yeramwar S, Patil S, Sharma P, Bhargava A. Design & development of solid self micro-emulsifying osmotic drug delivery system for isradipine. Journal of Drug Delivery and Therapeutics. 2014: 28-41.
7.    Ajazuddin, S. Saraf / Fitoterapia. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010; 81: 680–689. 
8.    Mehrdad Namdari et al. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis”, Biomedicine and Pharmacotherapy. 2017; 87: 321-331. 
9.    Thirumurugan Gunasekaran et al. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific Journal of Tropical Biomedicine. 2014; 4: 1-7. 
10.    Wina Maryana et al. Formation of Phytosome Containing Silymarin Using Thin Layer-Hydration Technique Aimed for Oral Delivery.  Materials today: Proceedings. 2016; 3: 855-866. 
11.    Pulok K. Mukherjee et al. Bioavailability of Herbal Products: Approach Toward Improved Pharmacokinetics. Evidence-Based Validation of Herbal Medicine. 2015: 217-245. 
12.    P.Vijayanand et al. Development and Characterization of Solid Lipid Nanoparticles Containing Herbal Extract: In Vivo Antidepressant Activity.  Hindawi Journal of Drug Delivery. 2018: 1 – 8.
13.    Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development, recent advances in novel drug carrier systems.  A.D. Sezer (Ed.), InTech. 2012. DOI: 10.5772/50486.
14.    Salata, Oleg V. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology. 2004; 2(1): 1-6. https://doi.org/10.1186/1477-3155-2-1
15.    Paull R, Wolfe J, Hebert P, Sinkula M. Investing in nanotechnology. Nature Biotechnology. 2003; 21(10): 1144-1147. 10.1038/nbt1003-1144. https://doi.org/10.1038/nbt1003-1144
16.    Manne R, Devarajan A. Development of nicotinic acid controlled release tablets with natural phenolic anti-oxidant polymer by encapsulation technique. Journal of Natural Remedies. 2021; 20(4): 204-16. https://doi.org/10.18311/jnr/2020/25514
17.    J. K. Patra et al. Nano based drug delivery systems: Recent developments and future prospects.  J. Nanobiotechnology. 2018; 16(1): 1–33.
18.    N. Jain, R. Jain, N. Thakur et al. Nanotechnology: a safe and effective drug delivery system. Asian Journal of Pharmaceutical and Clinical Research. 2010; 3(3): 159–165. 
19.    R. Singh and J. W. Lillard Jr. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology. 2009; 86(3): 215–223,. 
20.    J. Safari and Z. Zarnegar. Advanced drug delivery systems: nanotechnology of health design—a review. Journal of Saudi Chemical Society. 2014; 18(2): 85–99.
21.    Dos Santos Giuberti C, de Oliveira Reis EC, Ribeiro Rocha TG, Leite EA, Lacerda RG, Ramaldes GA, de Oliveira MC. Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. Journal of Liposome Research. 2011; 21(1): 60-69. https://doi.org/10.3109/08982101003754377
22.    Bai J, Li Y, Du J, Wang S, Zheng J, Yang O, Chen X. One-pot synthesis of polyacrylamide-gold nanocomposite. Materials Chemistry and Physics. 2007; 106(2-3): 412-415. https://doi.org/10.1016/j.matchemphys.2007.06.021
23.    Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic and Medicinal Chemistry Letters. 2007; 17(1): 53-56. https://doi.org/ 10.1016/j.bmcl.2006.09.098
24.    Kurakula M, Naveen N R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels. 2021; 7(3): 96. https://doi.org/10.3390/gels7030096
25.    Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharmaceutical Research. 2004; 21(2): 354-364. https://doi.org/10.1023/B:PHAM.0000016250.56402.99
26.    Murakami, H., Kobayashi, M., Takeuchi, H., and Kawashima, Y. Preparation of poly (DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International Journal of Pharmaceutics. 1999; 187(2): 143-152. https://doi.org/10.1016/S0378-5173(99)00187-8
27.    Kovacevic A, Savic S, Vuleta G, Mueller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International Journal of Pharmaceutics. 2011; 406(1-2): 163-72. https://doi.org/10.1016/j.ijpharm.2010.12.036
28.    Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968; 26(1): 62-9. https://doi.org/10.1016/0021-9797(68)90272-5
29.    Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: Drug delivery system. Chemistry of Materials. 2001; 13(2): 308-11. https://doi.org/10.1021/cm0011559
30.    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews. 2003; 55(3): 329-47. https://doi.org/10.1016/S0169-409X(02)00228-4
31.    Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996; 13: 1838-45 https://doi.org/10.1023/A:1016085108889
32.     Redhead HM, Davis SS, Illum L. Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. Journal of Controlled Release. 2001; 70(3): 353-63. https://doi.org/10.1016/S0168-3659(00)00367-9
33.     Müller RH, Wallis KH. Surface modification of iv injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. International Journal of Pharmaceutics. 1993; 89(1): 25-31. https://doi.org/10.1016/0378-5173(93)90304-X https://doi.org/10.1016/0378-5173(93)90304-X
34.    Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology. 2009; 86(3): 215-23. https://doi.org/10.1016/j.yexmp.2008.12.004
35.    Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Utilization of poly (DL-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release. 2000; 67(1):29-36. https://doi.org/10.1016/S0168-3659(99)00288-6
36.    Chikan V, McLaurin EJ. Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials. 2016; 6(5): 85. https://doi.org/10.3390/nano6050085. https://doi.org/10.3390/nano6050085
37.    Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 57(1): 53-63. https://doi.org/10.1016/S0939-6411(03)00095-X
38.    Ramanan RM, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature‐sensitive composite hydrogel for drug delivery applications. Biotechnology Progress. 2006; 22(1): 118-25. https://doi.org/10.1021/bp0501367

Recomonded Articles:

Author(s): Muhammad Adnan Younis, Iftikhar Hussain Bukhari, Qaisar Abbas, Neelam Bin Talib, Sana Shaukat

DOI: 10.5958/2231-3915.2018.00008.1         Access: Open Access Read More

Author(s): Arti, Neha kumara, Nitian Bharti Gupta

DOI: 10.52711/2231-3915.2021.00012         Access: Open Access Read More

Author(s): Amber Vyas, Narendra Kumar, Vishal Jain

DOI: 10.52711/2231-3915.2023.00012         Access: Open Access Read More

Author(s): Suyash Ingle, Monika Yemul, Anjali Lavate, Anjali Desai

DOI: 10.52711/2231-3915.2024.00017         Access: Open Access Read More

Author(s): Nikhil Shrisunder, Shrutika Yangul, Pranali Mahindrakar, Om Kothari, Jyotsana Uplanchi, Ruchita Adam

DOI: 10.52711/2231-3915.2025.00004         Access: Closed Access Read More

International Journal of Technology (IJT) is an international, peer-reviewed journal, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-3915 


Recent Articles




Tags