2231-3915 (Online)
2231-3907 (Print)

Author(s): Saba Wahid Khan, Indira Parab


DOI: 10.52711/2231-3915.2023.00007   

Address: Saba Wahid Khan1, Dr. Indira Parab2
1Master of Pharamacy, Department of Pharmaceutics, Mumbai University, Mumbai, India.
2HOD of Pharmaceutics, Mumbai University, Mumbai, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 1,     Year - 2023

Cellular tissues have intricate, highly complex tissue microenvironments. cytoarchitecture, structure tissue-specific compositional and mechanical heterogeneity, as well as a hierarchy of functions. Given the high demand for organ transplants and the scarcity of organ donors, bioprinting is an emerging technology that Having the capacity to address the issue of an organ shortage by creating entire, fully-functional organs. Even if the idea of printing organs is still far away off, there has been significant and laudable advancement when it comes to bioprinting that could be used to create transplantable tissues for regenerative medicine. The eleven organ systems used by humans body, including the skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems, were critically reviewed. A first-ever an analysis of 3D bioprinting in regenerative medicineis presented in this study. 3D bioprinting's effects In terms of in vitro drug testing models and drug delivery systems, there is also a brief discussion of drug discovery, development, and personalized medicine. While there is a substantial progress pertaining totechnology.

Cite this article:
Saba Wahid Khan, Indira Parab. A Detailed Review on 3D Bioprinting and it's Application in Pharmaceutical Science. International Journal of Technology. 2023; 13(1):57-7. doi: 10.52711/2231-3915.2023.00007

Saba Wahid Khan, Indira Parab. A Detailed Review on 3D Bioprinting and it's Application in Pharmaceutical Science. International Journal of Technology. 2023; 13(1):57-7. doi: 10.52711/2231-3915.2023.00007   Available on:

1.    S. Vijayavenkataraman, W.F. Lu, J.Y.H. Fuh, 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes, Biofabrication, 8 (2016).
2.    Y.J. Seol, H.W. Kang, S.J. Lee, A. Atala, J.J. Yoo, Bioprinting technology and its applications, Eur. J. Cardiothorac. Surg., 46 (2014) 342-348.
3.    S. Vijayavenkataraman, A Perspective on Bioprinting Ethics, Artif. Organs, 40 (2016) 1033-1038.
4.    Y.S. Zhang, M. Duchamp, R. Oklu, L.W. Ellisen, R. Langer, A. Khademhosseini, Bioprinting the Cancer Microenvironment, ACS Biomater. Sci. Eng., 2 (2016) 1710-1721.
5.    H. Cui, M. Nowicki, J.P. Fisher, L.G. Zhang, 3D Bioprinting for Organ Regeneration, Adv. Healthc. Mater., 6 (2017).
6.    I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting, Biomaterials, 76 (2016) 321-343.
7.    C.Y. Liaw, M. Guvendiren, Current and emerging applications of 3D printing in medicine, Biofabrication, 9 (2017).
8.    S. Jie, Y. Haoyong, T.L. Chaw, C.C. Chiang, S. Vijayavenkataraman, An Interactive Upper Limb Rehab Device for Elderly Stroke Patients, Procedia CIRP, 60 (2017) 488-493.
9.    C. Wu, B. Wang, C. Zhang, R.A. Wysk, Y.W. Chen, Bioprinting: an assessment based on manufacturing readiness levels, Crit. Rev. Biotechnol., 37 (2017) 333-354.
10.    S. Vijayavenkataraman, W.F. Lu, J.Y.H. Fuh, 3D bioprinting – An Ethical, Legal and Social Aspects (ELSA) framework, Bioprinting, 1-2 (2016) 11-21.
11.    W. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski, I.T. Ozbolat, 3D bioprinting for drug discovery and development in pharmaceutics, Acta Biomater., (2017).
12.    S. Vijayavenkataraman, J.Y. Fuh, W.F. Lu, 3D Printing and 3D Bioprinting in Pediatrics, Bioengineering, 4 (2017) 63.
13.    M. Rodríguez-Salvador, R.M. Rio-Belver, G. Garechana-Anacabe, Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting, PLoS One, 12 (2017).
14.    Markets and MarketsTM INC, 3D Bioprinting Market by Technology (Microextrusion, Inkjet, Laser, Magnetic), Material (Cells, Hydrogels, Extracellular Matrices, Biomaterials), Application (Clinical (Bone, Cartilage, Skin) & Research (Regenerative Medicine)) - Global Forecasts to 2021.
15.    Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: From pre-to post-bioprinting. Biotechnology advances. 2018 Sep 1;36(5):1481-504.
16.    D. Chrisey, A. Pique, J. Fitz-Gerald, R. Auyeung, R. McGill, H. Wu, M. Duignan, New approach to laser direct writing active and passive mesoscopic circuit elements, Appl. Surf. Sci., 154 (2000) 593-600.
17.    N.R. Schiele, D.T. Corr, Y. Huang, N.A. Raof, Y. Xie, D.B. Chrisey, Laser-based direct-write techniques for cell printing, Biofabrication, 2 (2010) 032001.
18.    M. Duocastella, M. Colina, J. Fernández-Pradas, P. Serra, J. Morenza, Study of the laser-induced forward transfer of liquids for laser bioprinting, Appl. Surf. Sci., 253 (2007) 7855-7859.
19.    L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P.M. Vogt, B. Chichkov, Skin tissue generation by laser cell printing, Biotechnol. Bioeng., 109 (2012) 1855-1863.
20.    L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, Laser printing of skin cells and human stem cells, Tissue Engineering Part C: Methods, 16 (2009) 847-854.
21.    P. Wu, B. Ringeisen, J. Callahan, M. Brooks, D. Bubb, H. Wu, A. Piqué, B. Spargo, R. McGill, D. Chrisey, The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write, Thin Solid Films, 398 (2001) 607-614.
22.    P. Wu, B. Ringeisen, Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP), Biofabrication, 2 (2010) 014111.
23.    Y.K. Nahmias, B.Z. Gao, D.J. Odde, Dimensionless parameters for the design of optical traps and laser guidance systems, Appl. Opt., 43 (2004) 3999-4006.
24.    T. Smausz, B. Hopp, G. Kecskemeti, Z. Bor, Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer, Appl. Surf. Sci., 252 (2006) 4738-4742.
25.    Lord Rayleigh., On the instability of jets, Proc. Lond. Math. Soc., 10 (1878) 4-13. 26H. Gudapati, M. Dey, I. Ozbolat, A comprehensive review on droplet-based bioprinting: Past, present and future, biomaterials, 102 (2016)20-42
26.    H. Saijo, K. Igawa, Y. Kanno, Y. Mori, K. Kondo, K. Shimizu, S. Suzuki, D. Chikazu, M. Iino, M. Anzai, Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology, J. Artificial Organs, 12 (2009) 200-205.
27.    J.A. Inzana, D. Olvera, S.M. Fuller, J.P. Kelly, O.A. Graeve, E.M. Schwarz, S.L. Kates, H.A. Awad, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration, Biomaterials, 35 (2014) 4026-4034.
28.    X. Cui, K. Breitenkamp, M.G. Finn, M. Lotz, D.D. D'Lima, Direct human cartilage repair using three-dimensional bioprinting technology, Tissue Eng. Part A, 18 (2012) 1304-1312.
29.    T. Xu, K.W. Binder, M.Z. Albanna, D. Dice, W. Zhao, J.J. Yoo, A. Atala, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications, Biofabrication, 5 (2013).
30.    K.W. Binder, W. Zhao, T. Aboushwareb, D. Dice, A. Atala, J.J. Yoo, In situ bioprinting of the skin for burns, J. Am. Coll. Surg., 211 (2010) S76.
31.    T. Xu, C. Baicu, M. Aho, M. Zile, T. Boland, Fabrication and characterization of bio-engineered cardiac pseudo tissues, Biofabrication, 1 (2009) 035001.
32.    C. Tse, R. Whiteley, T. Yu, J. Stringer, S. MacNeil, J.W. Haycock, P.J. Smith, Inkjet printing Schwann cells and neuronal analogue NG108-15 cells, Biofabrication, 8 (2016) 015017.
33.    R.D. Pedde, B. Mirani, A. Navaei, T. Styan, S. Wong, M. Mehrali, A. Thakur, N.K. Mohtaram, A. Bayati, A. Dolatshahi-Pirouz, M. Nikkhah, S.M. Willerth, M. Akbari, Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs, Adv. Mater., 29 (2017).
34.    M.S. Onses, E. Sutanto, P.M. Ferreira, A.G. Alleyne, J.A. Rogers, Mechanisms, capabilities, and applications of high‐resolution electrohydrodynamic jet printing, Small, 11 (2015) 4237-4266.
35.    H. Liu, S. Vijayavenkataraman, D. Wang, L. Jing, J. Sun, K. He, Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds, International Journal of Bioprinting, 3 (2017).
36.    H. Wang, S. Vijayavenkataraman, Y. Wu, Z. Shu, J. Sun, J.F.Y. Hsi, Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries, International Journal of Bioprinting, 2 (2016).
37.    J. Sun, S. Vijayavenkataraman, H. Liu, An overview of scaffold design and fabrication technology for engineered knee meniscus, Mater., 10 (2017) 29.
38.    A. Jaworek, A. Krupa, Classification of the modes of EHD spraying, J. Aerosol Sci, 30 (1999) 873-893.
39.    S.N. Jayasinghe, A.N. Qureshi, P.A. Eagles, Electrohydrodynamic jet processing: an advanced electric‐field‐driven jetting phenomenon for processing living cells, Small, 2 (2006) 216-219.
40.    P.A. Eagles, A.N. Qureshi, S.N. Jayasinghe, Electrohydrodynamic jetting of mouse neuronal cells, Biochem. J., 394 (2006) 375-378.
41.    A. Kwok, S. Arumuganathar, S. Irvine, J.R. McEwan, S.N. Jayasinghe, A hybrid bio-jetting approach for directly engineering living cells, Biomedical Materials, 3 (2008) 025008.
42.    L. Gasperini, D. Maniglio, A. Motta, C. Migliaresi, An electrohydrodynamic bioprinter for alginate hydrogels containing living cells, Tissue Engineering Part C: Methods, 21 (2014) 123-132.
43.    K. Shigeta, Y. He, E. Sutanto, S. Kang, A.-P. Le, R.G. Nuzzo, A.G. Alleyne, P.M. Ferreira, Y. Lu, J.A. Rogers, Functional protein microarrays by electrohydrodynamic jet printing, Anal. Chem., 84 (2012) 10012-10018.
44.    J.-U. Park, J.H. Lee, U. Paik, Y. Lu, J.A. Rogers, Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly, Nano Lett., 8 (2008) 4210-4216.
45.    U. Demirci, G. Montesano, Single cell epitaxy by acoustic picolitre droplets, Lab Chip, 7 (2007) 1139-1145.
46.    W.L. Ng, J.M. Lee, W.Y. Yeong, M. Win Naing, Microvalve-based bioprinting-process, bio-inks and applications, Biomater. Sci., 5 (2017) 632-647.
47.    N. Xu, X. Ye, D. Wei, J. Zhong, Y. Chen, G. Xu, D. He, 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair, ACS applied materials and interfaces, 6 (2014) 14952-14963.
48.    B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, W. Jia, M. Kazemzadeh-Narbat, S.R. Shin, A. Tamayol, A. Khademhosseini, Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue, Adv. Healthc. Mater., 6 (2017).
49.    V.H. Mouser, R. Levato, L.J. Bonassar, D.D. D’Lima, D.A. Grande, T.J. Klein, D.B. Saris, M. Zenobi-Wong, D. Gawlitta, J. Malda, Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration, Cartilage, (2016) 1947603516665445.
50.    J. Kim, I. Ko, Y. Seol, A. Atala, J. Yoo, S. Lee, 3D Bioprinting of Functional Skeletal Muscle Tissue for Volumetric Muscle Tissue Loss, Tissue engineering part a, Mary Ann Liebert, inc 140 huguenot street, 3RD FL, New Rochelle, NY 10801 USA, 2016, pp. S5-S5.
51.    S. Huang, B. Yao, J. Xie, X. Fu, 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration, Acta Biomater., 32 (2016) 170- 177.
52.    B. Duan, State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering, Ann. Biomed. Eng., 45 (2017) 195-209.
53.    F.Y. Hsieh, S.H. Hsu, 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration, Organogenesis, 11 (2015) 153-158.
54.    T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability, Biomaterials, 35 (2014) 49-62.
55.    C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, Google Patents, 1986.
56.    P. Soman, P.H. Chung, A.P. Zhang, S. Chen, Digital microfabrication of user‐defined 3D microstructures in cell‐laden hydrogels, Biotechnol. Bioeng., 110 (2013) 3038-3047.
57.    K. Arcaute, B.K. Mann, R.B. Wicker, Stereolithography of three-dimensional bioactive poly (ethylene glycol) constructs with encapsulated cells, Ann. Biomed. Eng., 34 (2006) 1429-1441.
58.    J.L. Curley, S.R. Jennings, M.J. Moore, Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography, Journal of visualized experiments: JoVE, (2011).
59.    K.-S. Lee, R.H. Kim, D.-Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two- photon initiated polymerization, Prog. Polym. Sci., 33 (2008) 631-681.
60.    F.P. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, 31 (2010) 6121-6130.
61.    B. Dhariwala, E. Hunt, T. Boland, Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography, Tissue Eng., 10 (2004) 1316-1322.
62.    Z. Wang, R. Abdulla, B. Parker, R. Samanipour, S. Ghosh, K. Kim, A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks, Biofabrication, 7 (2015).
63.    B.S. Kim, J.-S. Lee, G. Gao, D.-W. Cho, Direct 3D cell-printing of human skin with functional transwell system, Biofabrication, 9 (2017) 025034.
64.    C.R. Black, V. Goriainov, D. Gibbs, J. Kanczler, R.S. Tare, R.O. Oreffo, Bone tissue engineering, Current molecular biology reports, 1 (2015) 132-140.
65.    A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: recent advances and challenges, Critical ReviewsTM in Biomedical Engineering, 40 (2012).
66.    G. Gao, A.F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. Dai, X. Cui, Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA, Biotechnol. Lett., 37 (2015) 2349-2355.
67.    D.F. Duarte Campos, A. Blaeser, K. Buellesbach, K.S. Sen, W. Xun, W. Tillmann, H. Fischer, Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering, Adv. Healthc. Mater., 5 (2016) 1336-1345.
68.    A.C. Daly, F.E. Freeman, T. Gonzalez‐Fernandez, S.E. Critchley, J. Nulty, D.J. Kelly, 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering, Adv. Healthc. Mater., (2017).
69.    Y. Zhang, J.M. Jordan, Epidemiology of osteoarthritis, Clin. Geriatr. Med., 26 (2010) 355-369.
70.    K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, P. Gatenholm, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications, Biomacromolecules, 16 (2015) 1489-1496.
71.    A.C. Daly, S.E. Critchley, E.M. Rencsok, D.J. Kelly, A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage, Biofabrication, 8 (2016).
72.    M. Kesti, C. Eberhardt, G. Pagliccia, D. Kenkel, D. Grande, A. Boss, M. Zenobi-Wong, Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials, Adv. Funct. Mater., 25 (2015) 7406-7417.
73.    D.P. Forrestal, T.J. Klein, M.A. Woodruff, Challenges in engineering large customized bone constructs, Biotechnol. Bioeng., 114 (2017) 1129-1139.
74.    R. Levato, J. Visser, J.A. Planell, E. Engel, J. Malda, M.A. Mateos-Timoneda, Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers, Biofabrication, 6 (2014).
75.    J.A. Phillippi, E. Miller, L. Weiss, J. Huard, A. Waggoner, P. Campbell, Microenvironments Engineered by Inkjet Bioprinting Spatially Direct Adult Stem Cells Toward Muscle‐and Bone‐Like Subpopulations, Stem Cells, 26 (2008) 127-134.
76.    X. Cui, G. Gao, Y. Qiu, Accelerated myotube formation using bioprinting technology for biosensor applications, Biotechnol. Lett., 35 (2013) 315-321.
77.    F.-Y. Hsieh, H.-H. Lin, S.-h. Hsu, 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair, Biomaterials, 71 (2015) 48-57.
78.    S. England, A. Rajaram, D.J. Schreyer, X. Chen, Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration, Bioprinting, 5 (2017) 1-9.
79.    M. Nakamura, K. Arai, T. Mimura, J. Tagawa, H. Yoshida, K. Kato, T. Nakaji-Hirabayashi, Y. Kobayashi, T. Watanabe, Engineering of Artificial Lymph Node, Synthetic Immunology, Springer2016, pp. 181-200.
80.    E.A. Bulanova, E.V. Koudan, J. Degosserie, C. Heymans, F.D. Pereira, V.A. Parfenov, Y. Sun, Q. Wang, S.A. Akhmedova, I.K. Sviridova, Bioprinting of functional vascularized mouse thyroid gland construct, Biofabrication, 9 (2017)034105.
81.    R.T. Kershen, J.J. Yoo, R.B. Moreland, R.J. Krane, A. Atala, Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo, Tissue Eng., 8 (2002) 515-524.
82.    T.G. Kwon, J.J. Yoo, A. Atala, Autologous penile corpora cavernosa replacement using tissue engineering techniques, The Journal of urology, 168 (2002) 1754-1758.
83.    M. Vermeulen, J. Poels, F. de Michele, A. des Rieux, C. Wyns, Restoring fertility with cryopreserved prepubertal testicular tissue: perspectives with hydrogel encapsulation, nanotechnology, and bioengineered scaffolds, Ann. Biomed. Eng., (2017) 1-12.
84.    T.M. Research, Tissue Engineered Skin Substitutes Market (by Type—Acellular, Cellular Allogeneic, Cellular Autologous, and Others; by Application—Burn Injury, Diabetic/Vascular Ulcer, and Others)—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2015–2023, 2015.
85.    M. Rimann, E. Bono, H. Annaheim, M. Bleisch, U. Graf-Hausner, Standardized 3D bioprinting of soft tissue models with human primary cells, J. Lab. Autom., 21 (2016) 496-509.
86.    Y. Shan, Y. Wang, J. Li, H. Shi, Y. Fan, J. Yang, W. Ren, X. Yu, Biomechanical properties and cellular biocompatibility of 3D printed tracheal graft, Bioprocess Biosystems Eng., (2017) 1-11.
87.    N. Hamilton, A.J. Bullock, S. MacNeil, S.M. Janes, M. Birchall, Tissue engineering airway mucosa: a systematic review, The Laryngoscope, 124 (2014) 961-968.
88.    J.E. Nichols, J. Cortiella, Engineering of a complex organ: progress toward development of a tissue-engineered lung, Proc. Am. Thorac. Soc., 5 (2008) 723-730.
89.    K. Arai, T. Yoshida, M. Okabe, M. Goto, T.A. Mir, C. Soko, Y. Tsukamoto, T. Akaike, T. Nikaido, K. Zhou, Fabrication of 3D‐culture platform with sandwich architecture for preserving liver‐specific functions of hepatocytes using 3D bioprinter, Journal of Biomedical Materials Research Part A, 105 (2017) 1583-1592.
90.    Y. Kim, K. Kang, J. Jeong, S.S. Paik, J.S. Kim, S.A. Park, W.D. Kim, J. Park, D. Choi, Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure, Ann. Surg. Treat. Res., 92 (2017) 67-72.
91.    K. Zhang, Q. Fu, J. Yoo, X. Chen, P. Chandra, X. Mo, L. Song, A. Atala, W. Zhao, 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment, Acta Biomater., 50 (2017) 154-164.
92.    M.M. Elsawy, A. de Mel, Biofabrication and biomaterials for urinary tract reconstruction, Res. Reports Urology, 9 (2017) 79-92.
93.    B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, Journal of biomedical materials research Part A, 101 (2013) 1255-1264.
94.    R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration, Biomaterials, 32 (2011) 9218-9230.

Recomonded Articles:

Author(s): Ajay I. Patel, Bhatt Isha, Amit J. Vyas, Nilesh Patel

DOI: 10.52711/2231-3915.2022.00001         Access: Closed Access Read More

International Journal of Technology (IJT) is an international, peer-reviewed journal, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231-3915 

Recent Articles