Author(s):
Amber Vyas, Narendra Kumar, Vishal Jain
Email(s):
vishaljain123@gmail.com
DOI:
10.52711/2231-3915.2023.00012
Address:
Amber Vyas, Narendra Kumar, Vishal Jain*
University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 2,
Year - 2023
ABSTRACT:
One of the most terrifying and ugly forms of filariasis to humans is lymphatic filariasis, where adult worms 7-10 cm long are found in the lymphatic system. Mf continues to multiply in the bloodstream of the host and translocates eventually to the LS. Filariasis-causing parasites block the human blood vessels and lymph nodes.The impasse allows fluid to drain into the terminus of the body and accumulate in tissues, causing severe swelling christened “lymphoedema”. LF is caused due Filariodiaceae family roundworms, often these are of three types (Wuchereria bancrofti, Brugia malayi and Brugia timori). All of these are handed down through Anopheles mosquitoes, Aedes mosquitoes and Culex pipiens. In worldwide over 90% of infectious diseases are caused by W. bancrofti. Several synthetic drugs are currently used to treat this disease. However these drugs are not as effective as killing adult worms and at the same time, some side effects are also seen. Conversely, plant actives ingredients complex with phospholipids to form nano-sized vesicles. As parasites live in the small intestine, nanometer-sized phyto vesicles can protect plant actives from deterioration in the stomach and easily reach their target and kill parasites without side effects.
Cite this article:
Amber Vyas, Narendra Kumar, Vishal Jain. Drug- Phospholipid complex: A novel strategy for Lymphatic Filariasis treatment. International Journal of Technology. 2023; 13(2)90-0: doi: 10.52711/2231-3915.2023.00012
Cite(Electronic):
Amber Vyas, Narendra Kumar, Vishal Jain. Drug- Phospholipid complex: A novel strategy for Lymphatic Filariasis treatment. International Journal of Technology. 2023; 13(2)90-0: doi: 10.52711/2231-3915.2023.00012 Available on: https://ijtonline.com/AbstractView.aspx?PID=2023-13-2-4
REFERENCES:
1. Jayakumar K, Bindu R. International Journal of Scientific Research. 2020;9(60).
2. Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation. 2013 Jul;20(5):349-64.
3. Melrose WD. Lymphatic filariasis: new insights into an old disease. International journal for parasitology. 2002 Jul 1;32(8):947-60.
4. Farrar J, Hotez P, Junghanss T, Kang G, Lalloo D, White NJ. Manson’s tropical diseases: expert consult-online. Kidlington: Elsevier Health Sciences. 2013..
5. Amaral F, Dreyer G, Figueredo-Silva J, Noroes J, Cavalcanti A, Samico SC, Santos A, Coutinho A. Live adult worms detected by ultrasonography in human Bancroftian filariasis. The American journal of tropical medicine and hygiene. 1994 Jun 1;50(6):753-7.
6. Michael E, Grenfell BT, Bundy DA. The association between microfilaraemia and disease in lymphatic filariasis. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1994 Apr 22;256(1345):33-40.
7. Simonsen PE, Mwele NM, Edwin M, Mackenzie CD. Lymphatic Filariasis research and control in East and Southern Africa, DBL-Centroe from health Research and Development. Denmark. 2008:194pp.
8. Goel TC, Goel A, Goel TC, Goel A. Pathology of Lymphatic Filariasis. Lymphatic Filariasis. 2016:51-5.
9. https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis
10. Kasper D, Harrison TR. Harrison's principles of internal medicine. Vol. 1. McGraw-Hill, Medical Publishing Division; 2005.
11. Vanamail P, Ramaiah KD, Pani SP, Das PK, Grenfell BT, Bundy DA. Estimation of the fecund life span of Wuchereria bancrofti in an endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1996 Mar 1;90(2):119-21.
12. McKinney M, editor. Lippincott's Guide to Infectious Diseases. Lippincott Williams and Wilkins; 2011.
13. Rai PK, Nathawat MS. Geoinformatics in health facility analysis. Springer International Publishing; 2017.
14. Moody AH, Chiodini PL. Methods for the detection of blood parasites. Clinical and Laboratory Haematology. 2000 Aug;22(4):189-201.
15. McCarthy J. Diagnosis of lymphatic filarial infection. TB Nutman, Lymphatic filariasis, Imperial College Press, London. 2000 Jan 15:127-50.
16. Freedman DO, Filho PJ, Besh S, Silva MC, Braga C, Maciel A. Lymphoscintigraphic analysis of lymphatic abnormalities in symptomatic and asymptomatic human filariasis. Journal of Infectious Diseases. 1994 Oct 1;170(4):927-33.
17. Weil GJ, Lammie PJ, Weiss N. The ICT filariasis test: a rapid-format antigen test for diagnosis of bancroftian filariasis. Parasitology today. 1997 Oct 1;13(10):401-4.
18. Wattal S, Dhariwal AC, Ralhan PK, Tripathi VC, Regu K, Kamal S, Lal S. Evaluation of Og4C3 antigen ELISA as a tool for detection of bancroftian filariasis under lymphatic filariasis elimination programme. The Journal of communicable diseases. 2007 Jun 1;39(2):75-84.
19. Anitha K, Shenoy RK. Treatment of lymphatic filariasis: Current trends. Indian Journal of Dermatology, Venereology and Leprology. 2001 Mar 1;67:60.
20. Singh S, Patel M, Kushwah SS. An evaluation of mass drug administration compliance against filariasis of Tikamgarh district of Madhya Pradesh-A household-based community study. Journal of family medicine and primary care. 2013 Apr;2(2):178.
21. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. Journal of natural products. 2007 Mar 23;70(3):461-77.
22. McGarry HF, Plant LD, Taylor MJ. Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway. Filaria journal. 2005 Dec;4:1-9.
23. Cao WC, Van der Ploeg CP, Plaisier AP, van der Sluijs IS, Habbema JD. Ivermectin for the chemotherapy of bancroftian filariasis: a meta‐analysis of the effect of single treatment. Tropical Medicine and International Health. 1997 Apr;2(4):393-403.
24. Critchley J, Addiss D, Ejere H, Gamble C, Garner P, Gelband H, International Filariasis Review Group. Albendazole for the control and elimination of lymphatic filariasis: systematic review. Tropical Medicine and International Health. 2005 Sep;10(9):818-25.
25. Hoerauf A. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Current opinion in infectious diseases. 2008 Dec 1;21(6):673-81.
26. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018 Dec;16(1):1-33.
27. Kaledin VI, Matienko NA, Nikolin VP, Gruntenko YV, Budker VG, Vakhrusheva TE. Subcutaneously injected radiolabeled liposomes: transport to the lymph nodes in mice. Journal of the National Cancer Institute. 1982 Jul 1;69(1):67-71.
28. Nakamura T, Kawai M, Sato Y, Maeki M, Tokeshi M, Harashima H. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Molecular pharmaceutics. 2020 Jan 28;17(3):944-53.
29. Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Advanced Drug Delivery Reviews. 1995 Oct 1;17(1):129-48.
30. Oussoren C, Zuidema J, Crommelin DJ, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection I. Influence of the anatomical site of injection. Journal of Liposome Research. 1997 Jan 1;7(1):85-99.
31. Tseng YC, Xu Z, Guley K, Yuan H, Huang L. Lipid–calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials. 2014 May 1;35(16):4688-98.
32. Kato S, Shirai Y, Motozono C, Kanzaki H, Mori S, Kodama T. In vivo delivery of an exogenous molecule into murine T lymphocytes using a lymphatic drug delivery system combined with sonoporation. Biochemical and biophysical research communications. 2020 May 14;525(4):1025-31.
33. Managuli RS, Wang JT, Faruqu FM, Pandey A, Jain S, Al-Jamal KT, Mutalik S. Surface engineered nanoliposomal platform for selective lymphatic uptake of asenapine maleate: In vitro and in vivo studies. Materials Science and Engineering: C. 2020 Apr 1;109:110620.
34. Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Journal of controlled release. 2008 Jul 2;129(1):1-0.
35. McLennan DN, Porter CJ, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discovery Today: Technologies. 2005 Mar 1;2(1):89-96.
36. Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. Journal of Controlled Release. 2014 Nov 10;193:241-56.
37. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nature reviews Drug discovery. 2015 Nov;14(11):781-803.
38. Nakamura T, Kawai M, Sato Y, Maeki M, Tokeshi M, Harashima H. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Molecular pharmaceutics. 2020 Jan 28;17(3):944-53.
39. Zhao J, Qin Z, Wu J, Li L, Jin Q, Ji J. Zwitterionic stealth peptide-protected gold nanoparticles enable long circulation without the accelerated blood clearance phenomenon. Biomaterials science. 2018;6(1):200-6.
40. de Kruijff RM, Raavé R, Kip A, Molkenboer-Kuenen J, Roobol SJ, Essers J, Heskamp S, Denkova AG. Elucidating the influence of tumor presence on the polymersome circulation time in mice. Pharmaceutics. 2019 May 20;11(5):241.
41. Magaña IB, Yendluri RB, Adhikari P, Goodrich GP, Schwartz JA, Sherer EA, O'Neal DP. Suppression of the reticuloendothelial system using λ-carrageenan to prolong the circulation of gold nanoparticles. Therapeutic Delivery. 2015 Jul;6(7):777-83.
42. Wu Z, Chen B, Gan Z, Chen F, Luo X. Exogenous vitamin C-triggered surface charge conversion of pH/reduction-responsive micelles for the enhanced tumor-specific activity of loaded doxorubicin. Molecular Pharmaceutics. 2020 Jan 24;17(3):954-64.
43. Wang D, Dong H, Li M, Cao Y, Yang F, Zhang K, Dai W, Wang C, Zhang X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS nano. 2018 May 25;12(6):5241-52.
44. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews. 2016 Apr 1;99:28-51.
45. Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. The Journal of clinical investigation. 2015 Jun 1;125(6):2532-46.
46. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014 Nov 20;41(5):830-42.
47. Barber GN. STING: infection, inflammation and cancer. Nature Reviews Immunology. 2015 Dec;15(12):760-70.
48. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature immunology. 2016 Oct;17(10):1142-9.
49. Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharmaceutica Sinica B. 2021 Aug 1;11(8):2449-68.
50. JBaek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. European Journal of Pharmaceutics and Biopharmaceutics. 2017 Aug 1;117:132-40.
51. Dufresne I, Désormeaux A, Bestman-Smith J, Gourde P, Tremblay MJ, Bergeron MG. Targeting lymph nodes with liposomes bearing anti-HLA-DR Fab′ fragments. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1999 Oct 15;1421(2):284-94.
52. Moghimi SM, Moghimi M. Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2008 Jan 1;1778(1):51-5.
53. Liang R, Xie J, Li J, Wang K, Liu L, Gao Y, Hussain M, Shen G, Zhu J, Tao J. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials. 2017 Dec 1;149:41-50.
54. Le Moignic A, Malard V, Benvegnu T, Lemiègre L, Berchel M, Jaffrès PA, Baillou C, Delost M, Macedo R, Rochefort J, Lescaille G. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. Journal of Controlled Release. 2018 May 28;278:110-21.
55. Nankervis R, Davis SS, Day NH, Shaw PN. Effect of lipid vehicle on the intestinal lymphatic transport of isotretinoin in the rat. International journal of pharmaceutics. 1995 Jun 9;119(2):173-81.
56. Trevaskis NL, Hu L, Caliph SM, Han S, Porter CJ. The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport. JoVE (Journal of Visualized Experiments). 2015 Mar 6(97):e52389.
57. Lee G, Han S, Inocencio I, Cao E, Hong J, Phillips AR, Windsor JA, Porter CJ, Trevaskis NL. Lymphatic uptake of liposomes after intraperitoneal administration primarily occurs via the diaphragmatic lymphatics and is dependent on liposome surface properties. Molecular pharmaceutics. 2019 Oct 18;16(12):4987-99.
58. Lee G, Han S, Lu Z, Hong J, Phillips AR, Windsor JA, Porter CJ, Trevaskis NL. Intestinal delivery in a long-chain fatty acid formulation enables lymphatic transport and systemic exposure of orlistat. International Journal of Pharmaceutics. 2021 Mar 1;596:120247.
59. Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G, Lim SF. Targeted delivery of mycophenolic acid to the mesenteric lymph node using a triglyceride mimetic prodrug approach enhances gut-specific immunomodulation in mice. Journal of Controlled Release. 2021 Apr 10;332:636-51.
60. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nature reviews Drug discovery. 2015 Nov;14(11):781-803.
61. Mao Y, Feng S, Li S, Zhao Q, Di D, Liu Y, Wang S. Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials. 2019 Jan 1;188:173-86.
62. Baek JS, Cho CW. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. European Journal of Pharmaceutics and Biopharmaceutics. 2017 Aug 1;117:132-40.
63. Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G, Lim SF. Targeted delivery of mycophenolic acid to the mesenteric lymph node using a triglyceride mimetic prodrug approach enhances gut-specific immunomodulation in mice. Journal of Controlled Release. 2021 Apr 10;332:636-51.
64. Bombardelli E, Curri SB, Della Loggia RO, Del Negro P, Gariboldi P, Tubaro A. Complexes between phospholipids and vegetal derivates of biological interest.
65. Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discovery Today. 2013 Oct 1;18(19-20):936-49.
66. Pu Y, Zhang X, Zhang Q, Wang B, Chen Y, Zang C, Wang Y, Dong TT, Zhang T. 20 (S)-Protopanaxadiol phospholipid complex: process optimization, characterization, in vitro dissolution and molecular docking studies. Molecules. 2016 Oct 19;21(10):1396.
67. Tripathy S, Patel DK, Barob L, Naira SK. A review on phytosomes, their characterization, advancement and potential for transdermal application. Journal of Drug Delivery and Therapeutics. 2013 May 13;3(3):147-52.
68. Semalty A, Semalty M, Rawat MS, Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia. 2010 Jul 1;81(5):306-14.
69. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, Kim JA, Yoo BK, Woo JS, Yong CS, Choi HG. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). European Journal of Pharmaceutics and Biopharmaceutics. 2009 Aug 1;72(3):539-45.
70. Semalty A, Semalty M, Rawat MS, Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The Phytosome® strategy to improve the bioavailability of phytochemicals. Fitoterapia. 2010 Jul 1;81(5):306-14.
71. Bombardelli E, Curri SB, Della Loggia R, Del Negro P, Gariboldi P, Tubaro A. Anti-inflammatory activity of 18-ß-glycyrrhetinic acid in phytosome form. Fitoterapia. 1989;60:29-37.
72. Yu JN, Zhu Y, Wang L, Peng M, Tong SS, Cao X, Qiu H, Xu XM. Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles. Acta pharmacologica sinica. 2010 Jun;31(6):759-64.
73. Khan AA, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. International journal of nanomedicine. 2013 Jul 26:2733-44.
74. Kuche K, Bhargavi N, Dora CP, Jain S. Drug-phospholipid complex—a go through strategy for enhanced oral bioavailability. AAPS PharmSciTech. 2019 Jan 4;20(2):43.
75. Semalty A, Semalty M, Rawat MS, Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia. 2010 Jul 1;81(5):306-14.
76. Bhattacharyya S, Ahammed SM, Saha BP, Mukherjee PK. The gallic acid–phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability. Aaps Pharmscitech. 2013 Sep;14:1025-33.
77. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. European Journal of Pharmaceutical Sciences. 2017 Oct 15;108:36-49.
78. Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. International journal of pharmaceutics. 2013 May 1;448(1):168-74.
79. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009 Sep 1;14(3):226-46.
80. Telange DR, Sohail NK, Hemke AT, Kharkar PS, Pethe AM. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Delivery and Translational Research. 2021 Jun;11:1056-83.
81. Li B, Han L, Cao B, Yang X, Zhu X, Yang B, Zhao H, Qiao W. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model. Drug delivery. 2019 Jan 1;26(1):566-74.
82. Biswas S, Mukherjee PK, Harwansh RK, Bannerjee S, Bhattacharjee P. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid–phospholipid complex. Drug Development and Industrial Pharmacy. 2019 Jun 3;45(6):946-58.
83. Jain A, Saini S, Kumar R, Sharma T, Swami R, Katare OP, Singh B. Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: Synthesis, characterization and preclinical assessment. International Journal of Pharmaceutics. 2019 Nov 25;571:118698.
84. Ravi GS, Charyulu RN, Dubey A, Prabhu P, Hebbar S, Mathias AC. Nano-lipid complex of rutin: Development, characterisation and in vivo investigation of hepatoprotective, antioxidant activity and bioavailability study in rats. Aaps Pharmscitech. 2018 Nov;19(8):3631-49.